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DEFLKTION AND STRES? ANALYSIS OF THIN SOLID WINGS OF ARBITRARY PLAN FORM 
WITH PARTICULAR REFERENCE TO DELTA WINGS et 

By MANUEL STEIN, J. EDWARD ANDERSON, and JOHN M. HEDCEPETH 

SUMMARY 

The structural analysis of arbitrary solid cantilever wings by 
small-dejection thin-plate theory is reduced to the solution of 
linear ordinary differential equations by the assumption that 
the chordwise desections at any spanwise station may be ex- 
pressed in the form of a power series in which the coeficients are 
junctions of the spanwise coordinate. If the series is limited to 
the jirst two and three terms (that is, $j linear and parabolic 
chordwise deflections, respectively, are assumed), the dijerential 
equations for the coeficients are solved exactly for unijormly 
loaded solid delta wings of constant thickness and of symmetrical 
double-wedge airfoil section with constant thickness ratio. For 
cases for which exact solutions to the digerential equations 
cannot be obiained, a numerical procedure is derived. Experi- 
mental deflection and stress data for constant-thickness delta- 
plate specimens of 45” and BOO sweep are presented and are 
-found to compare favorably with the present theory. 

INTRODUCTION 

One of the present trends in the development of high-speed 
airplanes and missiles is toward the use of thin low-aspect- 
ratio wings. The structural analysis of these wings often 
cannot be based on beam theory since the structural defor- 
mations may vary considerably from those of a beam and, 
indeed, may more closely approach those of a plate. In 
cases where the wing construction is solid or nearly solid the 
use of plate theory in the analysis is particularly valid, and 
it is this type of wing which is considered in the present 
report. 

Exact solutions to the partial-differential equation of plate 
theory are not readily obtained, especially for plates of 
arbitrary shape and loading; however, a number of approxi- 
mate solutions to specific problems on cantilever plates have 
appeared in the literature (see, for example, refs. 1 to 7). 
Of the approaches used in these references, only the one in 
references 6 and 7 is readily applicable to plates of arbitrary 
plan form, thickness distribution, and load distribution; thus 
it is the most useful one for the analysis of actual wings. 

In reference 6 the cantilever-plate problem is simplified by 
the assumption that the deformations of the plate in the 
chordwise direction (parallel to the root) are linear. By 
minimizing the potential energy of the plate, the partial- 
differential equation of plate theory is replaced by two 

simultaneous ordinary differential equations for the spanwise 
variations of the bending deflection and twist. In reference 7 
the same ordinary differential equations are obtained in a 
different manner. Refinement of the analysis by inclusion 
of the effect of parabolic, cubic, or higher-order chordwise 
camber terms is indicated in reference 6, and as the order of 
refinement is increased a corresponding increase in the num- 
ber of ordinary differential equations is obtained. 

In the present report, which is an extension of reference 6, 
a general set of ordinary differential equations is presentecl 
which may be used to obtain any desired degree of approxi- 
mation to the deflection of the plate. These equations are 
solved exactly for several cases of delta plates under uniform 
load first by considering linear chordwise deformation only 
and second by including the effect of parabolic chordwise 
camber. Comparisons are drawn between the stresses and 
deflections computed from the equations of each approxi- 
mation and also with some experimental results. 

The differential equations presented contain coefficients 
that depend on the plan form and stiffness distribution of the 
plate and on the loading. In this report, the plates con- 
siderecl in detail have coefficients such that the differential 
equations can be solved exactly; however, in cases for which 
exact solutions cannot be obtained a numerical procedure 
must be used. One such procedure is derived and its 
accuracy is demonstrated. 

SYMBOLS 

1 
c 
P 

t 
t ao 

length of plate measured perpendicular to root 
root chord of plate 
lateral load per unit area, positive in z- 

direction 
local thickness of plate 
average thickness of plate 

n 
a 

local flexural stiffness, Et3 
12(1--Z) 

flexural stiffness based on average thickness, 
Et,, 

12(1-j?) 
E modulus of elasticity of material 
P Poisson’s ratio 
W deflection of plate, positive in z-direction 
x, y, 2 coordinates defined in figure 1 

1 Supersedes NACA TN 2621, “Deflection and St.ress Analysis of Thin Solid Wings of Arbitrary Plan Form With Particular Reference to Delta Wings” by Manuel Stein, J. Edward 
hnderson, and John M. Hedgepeth, 1952. 
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ld 
FIGURE l.-Coordinate system used in the present analysis for a canti- 

lever plate of arbitrary shape with arbitrary thickness variation. 

function of 2, coefficient in power series for 

deflection w=%$~ cpn(x)yn 

functions defining plan form (see fig. 1) 

variable obtained by transformation x1 = 1-z 1 
normal stresses 
shear stress 
maximum principal stress 

1 aspect-ratio parameter, ; 

RESULTS 

The derivation of the general set of ordinary differential 
equations is given in appendix A. The general procedure 
outlined in reference 6 is followed; that is, the deflection 
of the plate w is expandecl into a power series in y the chord- 
wise coordinate with coefficients which are functions of x 
the spanwise coordinate (see fig. 1) 

w=cp~(x:)+cpl(x)Y+cp2(x)Y2+ . . . +(PN(x)YN (1) 

Equation (1) is substituted into the expression for the po- 
tential energy of the plate-load combination which is in 
turn minimized by the calculus of variations with respect 
to each of the coefficients qn. The results of the variational 
procedure appear as N+l simultaneous difl’erentinl equa.- 
tions with the coefficients (Pi as unknowns. 

By taking a sufficient number of terms in the expansion 
of w, the resulting differential equations can be usecl to ob- 
tain any desired degree of accuracy in the solution for the 
deflections of any given cantilever plate subjected to an 
arbitrary lateral load. Of most interest, perhaps, are the 
particular cases for N=l and N=2, which are obtained 
from the general set of equations and are simplified in 
appendix A. The case for N=l (also derived in refs. 6 

and 7) includes linear chordwise deflections, and the case for 
N=2 takes into account parabolic chordwise curvature. 
Although for most practical problems the solution by the 
parabolic theory should be adequate, cases might exist in 
which cubic, quartic, or even higher-order chordwise terms 
should be included, depending on the convergence of the 
series for the configuration considered. 

The particular equations for N= 1 and N=2 are used to 
determine the deflections and stresses of the following can- 
tilever plates subjected to uniform lateral load : 

(1) A 45’ delta plate of uniform thickness 
(2) A 60’ delta plate of uniform thickness 
(3) A 45” delta plate of symmetrical double-wedge airfoil 

section with constant thickness ratio 
Fortunately, for these configurations, the solution can be 

carried out exactly by both the linear and parabolic theories, 
and the details of these exact solutions are included in 
appendix B. In general, however, exact solutions cannot 
be obtained and some numerical method must be used. 
One such method, based on replacing derivatives by their 
first-orcler-approximation difference forms, is derived in 
appendix C. 

A summary of the results for the three particular problems 
is shown in figures 2 to 11. Deflections obtained by the 
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FIGURE 2.-Deflections of a 45’ delta plate of uniform thickness 
uniform load. 



linear theory and the parabolic theory for the three con- 
figurations are compared in figures 2, 3, and 4. Stresses 
obtained by the linear theory and the parabolic theory 
for the three configurations are compared in figures 5, 6, 
and 7. Where available, experimental deflections and 
stresses are also shown in these figures. The details of the 
procedure used to obtain the experimental deflections .of 
the 45’ and’:60 uniform-thickness plates and the experi- 
mental stresses in the 45O uniform-thickness plate are con- 
tained in appendix D ; whereas the experimental root stresses 
for the 60’ uniform-thickness plate were obtained from 
reference 8. Figures 8 to 11 present the comparison be- 
tween deflections and stresses computed from the exact 
solutions of the differential equations and those computed 
from the numerical solutions of the same equations. 

DISCUSSION 

The results shown in figures 2 and 3 indicate that, with 
regard to deflections, either the linear theory or the parabolic 
theory is adequate for the case of a constant-thickness delta 
plate subjected to a uniform load, the comparison being some- 
what better for the 60’ plate than for the 45’ plate. If 
accurate slopes in the chordwise direction (angle of attack) 

.07 x/l I I 
01.0 

.06 

Experiment 
0- - Linear 
b- Parabolic 

FIGURE 3.-Deflections of a GO0 delta plate of uniform thickness under 
uniform load. 

are desired, however, the parabolic theory must be used 
because the error in the angle of attack as computed by the 
linear theory is as much as 30 percent (see figs. 2 and 3). 
The appreciable anticlastic curvature, evidenced by the 
experimental results of figures 2 and 3, may be important 
aerodynamically and is, of course, not taken into account by 
the linear theory. 

The apparent convergence of the aforementioned series 
in the case of the double-wedge-section plate (see fig. 4) 
implies that the linear theory is adequate for this case. The 
lack of chordwise curvature in the result obtained by the 
parabolic theory is attributable to the fact that the natural 
tendency of the plate to have anticlastic curvature is canceled 
by the opposite tendency of the thin edges to bend down 
under the load. Unfortunately, no experimental results 
are available for this configuration. 

In figure 4 the plate stiffness D in the nondimensional 
parameter wD/$ is the local value of D at a point where 
the thickness is equal to the average thickness of the plate 
as a whole. Thus the results of figure 4 are comparable 
with the- results of figure 2 on an equal-weight basis. It 
can be seen that the deflections of the double-wedge-section, 
constant-thickness-ratio plate are everywhere less than 

.06 
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FIGURE 4.-Deflections of a 45’ delta plate of symmetrical double- 
wedge airfoil section and constant thickness ratio under uniform load. 
ij= Et,.3 -. 
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those of the uniform-thickness plate although they increase 
rapidly near the tip. This curling-up or singularity in slope 
at the tip is a result of using a smalldeflection theory and 
probably would not be so marked in an actual case. 

The stress results for the 45’ and 60’ uniform-thickness 
delta plates indicate that both the linear and the parabolic 
theories are adequate and that the parabolic theory is better 
than the linear theory only near the root. It should be noted 
that, although the maximum principal stress over a large 
part of the 45’ plate is plotted in figure 5, only the stresses 

normal to the root along the line ;=0.0087 of the 60° plate 

are plotted in figure 6 since only these stresses are given in 
reference 8. (The maximum principal stress and the stress 
normal to the root are theoretically equal at the root since 
the root shear stress is zero.) 

Experimental data are lacking for the double-wedge-section 
delta plate and, therefore, only theoretical stresses are shown 
in figure 7. As in the case of deflections, the results obtained 
from the linear theory and those obtained from the parabolic 
theory are almost coincident, the clifference being greatest 
near the root. Figure 7 has also been plotted so that the 
results are directly comparable with those for the 45’ 
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FIGURE B.-Maximum principal stresses in a 45’ delta plate of uniform 
thickness under uniform load. 

uniform-thickness plate in figure 5 on an equal-weight 
basis. As can be expected, the double-wedge-section, 
constant-thickness-ratio plate is a better design structurally; 
the stresses in the double-wedge-section plate are everywhere 
smaller and are almost constant in the spanwise direction. 

The theoretical results in figures 2 to 7 have been obtained 
from exact solutions of the differential equations of the 
linear and parabolic theories. In order to test the reliability 
of the numerical method derived in appendix C, the differ- 
ential equations were also solved numerically. The results 
shown in figures 8 and 9 indicate that the agreement is good 
between the numerical solution in which five equal intervals 
u-em used and the exact solution of the differential equations 
for the case of the 45O uniform-thickness plate. The same 
good agreement can be expected in other cases where the 
thickness and load distributions are not too erratic and where 
the plate stiffness does not go to zero at the tip-that is, 
when no singularities appear at the tip. 
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FIGURE 6.--Normal-stress distribution near the root at F=O.OOSi 
> 

of 

a 60” delta plate of uniform thickness under uniform load. 
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Since the efficacy of the numerical method depends on 
how well parabolic arcs fit the various functions between 
stations, serious error can result from blind application. An 
example of the seriousness of these errors and of the manner 
in which they can be remedied is shown in figures i0 and 11. 
In these figures a comparison is made between exact and 
numerical results obtained on the 45’ double-wedge-section, 
constant-thickness-ratio plate. As can be expected, the 
five-station numerical solution fails to follow the exact solu- 
tion in the neighborhood of the singularity at the tip. Since 
the region of trouble is localized at the tip, a reasonable 
remedy would be to decrease the spacing of the station points 
near the tip. This decrease in spacing may be accomplished 
either by using a greater number of equally spaced stations 
or by using unequally spaced stations crowded near the tip. 
The increase in accuracy obtained by increasing the number 
of equally spaced station points to ten is shown in figures 
10 and 11. 

CONCLUDING REMARKS 

The general method presented herein for finding deflec- 
tions and stresses of solid or nearly solid wings is, in principle, 

2.0 I I 
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d=T+Ty 
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FIGURE 7.-Maximum principal stress in a 45’ delta plate of symmet- 
rical double-wedge airfoil section and constant thickness ratio under 
uniform load. 

capable of yielding arbitrarily accurate results for any con- 
figuration. It is seen that, for the examples considered, 
only the Crst two or three terms in the series expansion need 
be considered to obtain adequate accuracy. In addition, 
for most practical plate-like wings with clamped roots the 
first two or three terms will probably be adequate, although 
problems may exist wherein mom terms are needed. 

The numerical procedure, derived for application in cases 
where exact solutions cannot be obtained, gives good agree- 
ment when compared with exact solutions if enough stations 
are taken along the span. ‘rhe necessary number of stations 
is dependent on the type of thickness and loading distribution 
considered, five equally spaced stations being enough for 
the uniform-thickness delta wing subjected to uniform 
loading and ten being necessary for the double-wedge-section, 
constant-thickness-ratio delta wing subjected to uniform 
loading. 

LANGLEYAERONAUTICALLABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., November SO, 1961. 
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FIGURE S.-Numerical and exact solutions of the differential equations 
for the deflections of the free edges of a 45’ delta plate of uniform 
thickness under uniform load. 
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FIGURE 9.-Numerical and exact solutions of the differential equations 
(obtained by assuming linear chordmise deflections) for the maximum 
principal stresses along the free edges of a 45’ delta plate of uniform 
thickness under uniform load. 
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FIGURE lO.-Numerical and exact solutions of the differential equations 
(obtained by assuming linear chordmise deflections) for the deflec- 
tions along the free edges of a 45” delta plate of symmetrical doublc- 
wedge airfoil section and constant thickness ratio under uniforq load 
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FIGURE Il.-Numerical and exact solutions of the differential equa- 
tions (obtained by assuming linear chordwise deflections) for the 

masimum principal stress along the line g=f 
( >  

1-s 1 of a 45’ delta 

plate of symmetrical double-wedge airfoil section and constant 
thickness ratio under uniform load. 

APPENDIX A  
DERIVATION OF DIFFERENTIAL EQUATIONS 

The structure considered herein is a thin, elastic, isotropic, 
cantilever plate of arbitrary plan form and slowly varying 
thickness subjected to distributed lateral load (see fig. 1). 
By assuming that the deflection of the plate can be repre- 
sented by a power series in the chordwise coordinat,e and 
by applying the minimum-potential-energy principle, a set 
of ordinary differential equations in the spanwise coordinate 
is obtained from which the coefficients of the power series 
may be determined. First the general set of equations is 
derived; then the particular equations for the cases of linear 
chordwise deflections and parabolic chordwise cleflections are 
deduced from the general set and simplified. 

General equations,-The potential energy of the system 
under consideration is 

in which 

and p&y) is the distributed lateral load. 
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The assumption is made that the deflection w can be represented by the power series 

Substitution of this expression for w into equation (Al) gives 

Potential energy= 
I i 

“dx $ go nl I~m+n+l~m”~n”Smn Cm- 1) (n-1) ~+~-~(~,cp,-t- 
0 

2j.m (n- 1)~ m+n-l(pm”~bn+2(1--)172nam+n-1~m’~nl 1-g *.+w.) 

in which 

ur= 
.I‘ c;; mx,Y)Y’-‘dY (r= 1,2, . . . 2N+l) 

p,= s c;; pCw/W’dy (T= 1,2, . . . NSl) 

W) 

(A3) 

(A4) 

and the primes denote differentiation with respect to x. 
Minimization of the potential energy by means of the calculus of variations gives 

G(Potentia1 energy)=0 

= f m$o go [u,+,+l(cpm”d~,~“+(p,“6~,“)+mn(m- 1) b- l)um+n-3(~mG~a+‘PnG’Pm)f 

Integrating by parts and collecting terms results in 

S 2 
O= 

0 
dx ne 6~ ime0 Nu,+,+,cpm”)“+~m Cm- 1) (um+n-l&“- 2 (l-4 m~(um+n-lcpm’)‘+w(~- 1) um+n-l(om”+ 

pm(m-l)(u m+n-1’P,r~)‘-~(1-~IL)7~~~~,+.-lcp, L45) 

Everywhere in the region of the plate, except a.t t,ht boundary x:=0, the variation of w is arbitrary. At x=0 the 
cantilever boundary conditions 

bW 
w==&g=O 

yield 
%(o)=Pn’(o)=o (n=O, 1,. . . iv) (A@ 

and therefore the variation in these quantities must also be zero at x=0. 
Equa.tion (As) is then satisfied if, in addition to equation (A6), 

N 
~oK~m+n+lPm “)“+pm(m- 1) (u m+n-l~m)N-2(1-~)mn(u7n+n-~cpm’)‘+l*n(n-~I)u,+,-~cp,“+ 

mn(m-11) b- lh+n-3~ml=~,+l 

SoLu m+n+l’Pm N+IIm(?n.-l)n.,~+.-lcp,],=l=O (n.=O, 1, . . . IV) 

(n=O, 1, . X) (A7) 

(A81 

and 

go[@ m+n+l~mN)‘+~m(m-l)(u,~+,-~cp,>‘-22(~ --ll)mnu,,~+,-,cp,,~‘l,=1=0 (n=O, 1, . . . N> (A91 

Equations (A7) form a set of N+ 1 simultaneous ordinary differential equations for the functions qn(x). The functions qo, 
are completely determined by these differential equations and the boundary conclitions (A6), (A8), and (A9). 
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Particular case of linear chordwise deflections.-If 
N= 1, the deflection function becomes 

w=Po+Ym (Alo) 

a linear function in the chordwise direction, where p. is the 
bending deflection and p1 is the twist. Equations (A7) 
become. ~. .- -- 

bwoT”+ (uz(P1”)“=Pl (A1 1) 

Q-w;‘)“+ kwol”)“--2(1-/4) bA’)‘=P2 (-412) 

The root boundary conditions, given by equation (A6), 
become 

(Po(o)=cpo’(o)=(P1(o)=(Pl’(o)=o (A13) 

The tip boundary cotiditions, given by equations (A8) and 
(A9), become 

(~lP~‘+w~“)*=l=o (A14) 

(u2’po”+u3cp,“)z=l=0 (A15) 

[(~lcp,“)‘+ (G(Pl”)‘lz=l=o (Alf3) 

~~~~~o”)‘+~~scp~“~‘-~~~-~~~~(P~‘l2=~=o (A17) 

Equations (All) to (Al7) are the differential equations and 
corresponding boundary conditions presented in reference 
6 (if only clistributed load is considered) where the symbols 
Wand 0 are used instead of q. and cpl, respectively. 

If equation (All) is integrated twice and the boundary 
conditions (A14) and (Al6) arc used, 

C-418) 

Substitution of cpo” into equations (A12), (AIM), and (A17) 
gives 

in which 

(bvf%“),=1=0 W W  

[(b,cpl”)‘--2(1--)ulcp,‘l,=,=O (AX) 

b,=i&$ 

If equation (A19) is integrated once and the boundary 
condition (A21) is used, 

(hw”)--2U -P)u~cP,‘= -la2 dx-(zlll;, dx2)l (A22) 

The differential equation (A22) is a second-order differential 
equation in ‘pl’. The twist, cpl and then the bencling deflection 
‘p. are obtained by solving equations (A22) and (A18), respec- 
tively, by applying the boundary conditions (Al3) and (A20) . 

Particular case of parabolic chordwise deflections.-The 
effect of parabolic chordwise camber may be included by 

letting N= 2 in the general power series (eq. (A2)). If N= 2, 
the deflection function becomes 

w= ~o+YPl+Y2P2 

Here (02 represents the spanwise distribution of parabolic 
chordwise camber. For this case the differential equations 
(A7) become 

(u~~~~)"+(u2~~n)n+(u~y32n)N+2~(u,~~)"=~~ (A23) 

(W”? u + GwlN) n + kw2N) ” + 2P (a2(P2) N - 

2(1--)[(ulal’)‘+2(uz~~‘)‘1=pz (A24) 

(wPo”)“S- (~d(Pl”)n+ (~5(P2N)n+21L[~,cpoN+~2(P1”+~3(P2N+ 

(us~*)“1--4(1-~)[(u,cp~‘)‘+2(u,cpz’)’1+4u,cp,=ps (A%) 

with the boundary conditions 

~o(0)=~o,'(O)=cp,(O)=cp~'(O)=(p2(O)=(pz'(O)=0 (A26) 

(~l~oN+u2’plN+~3’p2/1+211~1(0*)z=1=0 (A27) 

~~~2cpon+u3~l~+~~~2N+~~~2(P2)z=I=0 (A28) 

(u,cpon+a*(P~N+uj(OqN+2~u3(P~)z=~=0 (A29) 

[(~,(a,“)‘+ (a,~“)‘+ (~3~2N)‘+2~CL(~1(02)‘l~=,=0 (A30) 

[(wfJo”)‘+ (WIN)‘+ b4P2N)‘+a.4w2)‘- 

2(1-~)(u~rp~‘+2u2~~‘)lz=,=0 (A31) 

[(u3'poN)'+(u4(PIN)'+(uj(p.,~)'+2~(u3(P~)'- 

4(1-~)(U2Cp1’+2U3(p2’)],,1=0 (A32) 

If equation (A23) is integratecl twice and the bounclary 
conditions (A27) and (A30) are used, 

Substitution of po” into the remaining differential equations 
and boundary conditions results in 

=~2-(zI’l” PI dx2)11 (A34) 

=P3-2~~z~z~~ dx2-(~~z~1Pl dx2)1 (A35) 

(bm”+bm”)z=~=O (A3f.9 

[(b,cpl”)‘+ (bm”)--2(1-d kw~~‘+2~2(~2’)12=1=0 (A37) 

(b2cp,“+bm”)z=~=O (A38) 

[(bm”)‘+ @a”)-40 -P*> b2(~~‘+%~2’)12=2=0 (AW 

(b~~o~=~,‘~~~=(P2~o)=(P2’~~~=0 G.440) 
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in which 

bl=o,-$ 

b2=,-‘F 

Stresses.-After the approximate deflection of the plate 
is determined from equations (Al8) and (AZ?) or from equa- 
tions (A33), (A35), and (A41), the extreme-fiber stresses may 
be calculated from the well-known equations of thin-plate 
theory, which are (see, for example, ref. 9): 

If equation (A34) is integrated and the boundary condition 
(A37) is used, 

(b~v~“)‘+(b~(pz”)‘-20 -P) (u,cp1’+2uw2’) 

=-lpp dx-(~f~~zp~ dx”y (A41) 

6(1 -p)D b2w 
r- 21- t2 ax by 

The maximum principal stress Q at any point in the plate 
Thus cp, and (p2 are obtained by solving equations (A35) and can be determined from 

(A41) with the boundary conditions (A36), (A38), (A39), and 
(A40). Subsequently, cpo can be obtained by solving equa- 
tion (A33) with the boundary conditions cpo(0) =cpo’(0) =O. 



APPENDIX B 
EXACT SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SOME SPECIFIC DELTA-PLATE PROBLEMS 

The differential equations of appendix A for linear and 
parabolic chordwise deflections are solved exactly for uni- 
formly loaded delta plates of constant thiclmess and of sym- 
metrical double-wedge airfoil section with constant thickness 
ratio. The equations for deflections obt.ained by the linear 
theory are presented in terms of the aspect-ratio parameter 
X for both kinds of delta plates. The equations for deflec- 
tions obtained by the parabolic t,heory are presented for 

& i= 1 and 3 with p=i for the constant-thickness delta plate 

and for %= 1, also with p=$ for the delta plate of symmet- 

rical double-wedge airfoil section wit,h constant thickness 
ratio. 

If the z-axis is passed Qlrough the edge perpendicular to 

the root and the substitution rl= l-7 is made, the differcn- 

Cal equations are clearly of the homogeneous type for which 
the solutions are of the form ~17, where y is a constant. For 
the configurations considered, the functions that define the 
plan form (see fig. 1) are then cl (2) = 0 and c2 (2) = CD:~, where c 
is the root chord. In all the equations of this appendix the 
primes denote differentiation wit,11 respect, to the new inde- 
pendent variable x1. 

DELTA PLATE OF UNIFORM THICKNESS UNDER UNIFORM LOAD 

Since the stiffness D is a constant for uniform-thickness 
plates, the co&Gents in the differential equations (see cq. 
(A4)) become 

b 1 ca 3 -!%!!!f x 3 
al 12 l 

b=a--a,a,=&!x, 2 4 al 12 ’ 
-. 

b3=a5-!!?T=$ x,5 
al 0314 

p I =pcn x*n 
n 

@ lb) 

(Blc) 

(Ble) 

Solution for linear chordwise deflections--If the co- 
efficients given by equations (Bl) are substituted into equa- 
tions (A22) and (A18) and the independent variable is 

changecl to xl= l--T, the following equations for linear 

chordwise deflections result : 
P14 (x13p1”)‘- 16X2x1(pl’=-2 Dc xl3 o-32) 

where 
033) 

The boundary conditions to be used with these equations are 
obtained from equations (A13) and (A20) and are 

cpo(l)=~“‘~l~=cp,(l)=cp,‘(l)=o 034) 

(x13p,n)t*=O= 0 035) 

‘l’hc grneral solution of equation (B2) is 

‘P~‘=A,~~Y-‘+A~~~-Y-I- ‘I2 PC 
4(1-2x2) DC (W 

whcrc 

and A1 and A2 arc arbitrary constants. Since X2 is inherently 
positive, the boundary condition (B5) requires that Az=O. 
One integration of equation (B6) ancl the application of the 
conditions cpl (1) = ‘pl’( 1) =0 yields 

X13--- 1 - ~- 
3 (B7) 

If equation (B3) is solved for cpo with the conditions 
cpo(l)=cpo’(l)=O, the result is 

pl” 1 
‘po=m jL2x2 g -[[2(5-44h*)(1-2,--y)~ 

Y--l 
-Y 1-x1- ( 

1 -x17+1 
r-t1 )I 038) 

Substitution of equations (B7) and (B8) into the equation 

gives the expression for the deflection w of the plate under 
the assumption of linear chordwise deflections. 

Solution for parabolic chordwise deflections.-If the co- 
efficients given by equations (Bl) are substituted into equa- 
tions (A41), (A35), and (A33) and the independent variable 

is again changed to x1= l-1, the following equations for 1 
11 
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parabolic chordwise deflections result: 

(x13~l”)‘+(x14cQ2”)‘- 16X2(zl~l’+x&p~‘)= -2 g xl3 

cw 

(x,4Q~y+g (x,%Q2”)“- 16X2 [(xh’)‘f; (x,~cQ~‘)‘]+ 

l-t/J !p- 
l--P 

X,CQ2=-$ (7+E) g X13 (BlO) 

c2 Qo”’ -; x1Ql”--3 X12Q2"- 
pP Xl2 

wQ2+~ 6 0311) 

The general solution is the sum of the homogeneous solu- 
tions and the particular integral 

The boundary conditions to be used with these equations are 

cpo(1)=‘po’(1)=cp~(1)=cp~‘(l)=cp2(l)=cp2’(1)=O (B12) 

(x~3Q,“+x14CQ2”)1,dJ= 0 0313) 

16 
X~4Q~11+- X,kQz” 

15 > 
=o (Bl4) 

zr=O 

(21”Q1”)‘+g (X15CQ2”)‘- 1 6X2 
4 

X12Q,‘+3 X13CQ2’ 
>I 

=o 
n=o 

0315) 

The homogeneous solutions of the simultaneous equations 
(B9) and (BlO) are of the form 

(pl'=Axl+ 

p2= Bx17 -I 

Substitution of these expressions into the homogeneous parts 
of equations (B9) and (BlO) leads to the following charac- 
teristic equation from which X may be determined: 

y6-6(1 + 16X2)-y+ y2-- 

e X6+80 (4+:f:) h4+96X’+1]=0 

(BlG) 

and gives the following relationship between A and II: 

A=-(r-l) [(‘!;ww] ,eB 

The particular solutions for uniform loading arc given b3 

~,'=ki,.r,~ 

Q2=&,x12 

where 
:3F+1 2-/l ~- 

A,=1 
4 

1-p 
XJ-2 l- AZ+ 1 

--.--!Y? _-. ..-.. ~~ p14 ..__ 
2 8 ;-T-i (2X2- 1)X4-(8X2- 1)(4X2- 1) Dc 

;$ (2X*-l)+ 1 +4X2 p14 

4 8 ; “, (2X2- 1)X*-(8X2- 1)(4X2- 1) DE2 

Q2=n& Bnx,Y~r -‘+B,xI” (B17) 

where the values yn are the six roots of the characteristic 
equation (B16) and the coefficients A, and B, are the co- 
efficients corresponding to each of these roots. After inte- 
gration Q1 becomes 

Q,=~& A, z+A, $+A, 0318) 

The general solution for Q. from equation (Bll) is found 
to bc 

a,=-& C,~~rn+1+Cp,,4+~qx,+~r 0319) 
1, = 1 

where, for 77= 1, 2, . . 6, 

cl=-y (rc+l) pq 
?I n 

A,+S[(~.-l)(y,--e)+~~lB,1 

and 

The coefficients A, to A6, A,, C,, and C, must be determined 
by the boundary conditions (B12) to (B15). 

A complete set of coefficients is given in the following table 
for delt,a plates with Poisson’s ratio p equal to l/3 and with 

x=L= 1 and I$. Deflection curves plotted from these 
c 

results are shown in figures 2 and 3 in which t~he 45’ plate 
1 4 corresponds t,o ;= 1 and the GO0 plate corresponds to h=3. 

- 
I 
5 
4 r 
ii 
P  
I r 

X=1 

2. io34 

t: zi 
-2.7034 
-4.9437 
-8.381B 
_ _ _ _ 

1, 5GTl 
;: g;; 

-1.5671 
-3.6347 
-4.7258 

1 I:::: 
I -- ---- 

0.7378 
02411 

.0382; 

i 
0 

--.8000 
-. 01557 

I ------- 

-. 
A=g x=1 A&  h=l 3 3 A=$ 

--- ____. 

0.09832 -0.3133 -0.1022 -0.02931 -0.003223 
.3707 -_ 03039 --.4313 .003Oi4 .01347 

-_ li6D -_ 006293 OT3i9 . OW48F .00231i 

i i i : i 
0 0 0 0 0 
-. 2903 .3500 .4597 .04l(i7 OQ403? 
-.02924 .- __..._ __ ____.. -.Oi152 -. 08354 

.__ _- .___._ ._.___.. .05F(i8 .06692 

Substitution of equations (BIT), (Bl8), and (B19) into the 
equation 

w=Qo+yQ’ +Y2Qt 

gives the expression for the deflection 20 of the p1at.e under the 
a.ssumption of parabolic chordmise deflection. 
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DELTA PLATE OF SYMMETRICAL DOUBLE-WEDGE AIRFOIL SECTION WITH 
CONSTANT THICKNESS RATIO UNDER UNIFORM LOAD 

For a delta plate of symmetrical double-wedge airfoil 
section with a con&ant thickness ratio the thickness is a 
function of z and y and is given by the following equations: 

where t,, is the average thickness. From these expressions 
for the thickness the stiffness can be found and the coeffi- 
cients in the differential equations become 

(B20) 

(&S) for linear chordwise deflections may be solved for p1 
and (oo. The steps in the solution are t.he same in form as 
those for the uniform-thickness plate and the resulting 
equations are 

and 

20 ( > pg+g (x1 log,2,+1--21) 
72-3 1 g (J322) 

where 

-r= 

Solution for parabolic chordwise deflections.-By use of 
the coefficients given by equations (B20), equations (A41), 
(R35), and (A33) for parabolic chordwise deflections may be 
solved for (pl, ‘PZ, and cpo. The steps in the solution are 
again the same in form as those for the uniform-thickness 
plate and the resulting general expressions for ql, cpz, and 
PO are 

Solution for linear chordwise deflections.-By use of the 
coefficients given by equations (BOO), equations (A22) and 

where the csponents y,,, are the roots of the characteristic equation 

3 

+oL=& A, x1y”-2- A+ A, log, x1 
ll=l rn-; 

(B23) 

(B24) 

PO=& Cndn-~+cpxI log,2,+c,x~+c, 
a = 1 

(B25) 

[;(,9)-200X21=0 (B26) 

For n=l, 2,. . . 6, A,, B,, and C, are related by 
2%- 80x2 

B=--- -__ -? 4 
' (+ [@a) (y+;)-80X2j ' 
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For uniform load the coefficients in the particuhk integrals of equations (B23), @24), and (B25) arc 

A =II!@  
y+ 1024X2+320 2 x4-16 5++ 

( 
cc x2 

> 
(10X2$1) 

P 
27 Bc (20x2+1) (y+1024X2+320 2 X4)-120(16h2+l)(10~2+l) 

j-j ,40.@  
15(16X2+1)-2(20X2+1) (5+E) 

’ 27 DC2 (20X2+1) (?+1024x’+320 ;G x’)-120(16~2+l)(10X2+1) 

The coefficients A, to A,, A,, C,,, and C, are again determined by the boundary conditions (A26), (A36), (A38), and (A39) in 
which the coefficients given by equations (B20) are substituted. 

For Poisson’s ratio p equal to 5 and x=f= 1, the solution of tbc charnct~cristic equation (B26) lea,ds to two real values and 

two pairs of complex conjugate values for y. The identity 

X l  a*ib =xla cos (b log, rl) l i..rIe sin (b log, 2,) 

was therefore used to transform the terms involving the complex conjugate values into real form. If f= 1 and II=+, the 

solution is 

p2=& 0.004070x1”~g~7-0.004363~1s~075 cos (2.825 log, x,) $O.OO6893x1*.o75 sin (2.825 log, x1) +0.000294 $ 1 
-0.003896x,4~Q47+0.002134x1a~075 cos (2.825 log, x,) -0.006381x,9~075 sin (2.825 log, x,) + 0.01794 log, x1 +0.001763 1 

$oo=@ 
[ 

0 0007715x,~~9”7- 
i7 . 

0.0000708x1’o~075 cos (2.825 log, x1) -/-0.001234r:110~07~ sin (2.S25 log, x1) + 

0.033311, log, xl--0.04096x1+0.04026 1 



APPENDIX C 
NUMERICAL PROCEDURE FOR SOLVING DIFFERENTIAL EQUATIONS 

Ih cases”wherFthe ecjuations of the present theory cannot 
be solved exactly a numerical method must be used. In 
this appendix, equations (A19) and equations (AM) and 
(A35) are set up in difference form for numerical solution. 
Initially the assumption is made that the functions involved 
in the differential equations are continuous and nonsingular. 
In this case, first and second derivatives can be expressed by 
the standard difference forms 

( > 

2 ~Yn+l--Yn+Yn-I 
n -e2 

dY ( > Yn+$-yn-3 2 
ds,= 6 

where B is the distance between equally spaced station points. 
In the following development five equally spaced span- 

wise stations are used; however, the extension to a different 
number of stations can be readily made. 

First, consider equation (A19) resulting from the linear 
theory 

Because of the nature of the tip boundary conditions for 
this equation, it can be conveniently put in the form 

where 

T'=g, ICl) 

In finding the diffcrencc equation equivalent to equation 
(Cl), the quantity (blpl”)’ is found in matrix form; from 
this expression is subtracted the matrix equivalent of 
2(1 --~)u~~~‘; the resulting expression for T is multiplied by 
a differentiating matrix; and the product is equated to the 

1 right-hand side. 

The quantity (bl(pL”)’ at the half-stations can be expressed in matrix form as follows: 

‘1 -2 1 ‘pl- 
1 -2 1 (010 

1 -2 1 cpll 
1 -2 1 (P12 

1 -2 1 I PI3 

914 

(016 

K% 

where the second subscript denotes the station point, the subscript at the root station being 0 and at the tip 5. The 
root boundary conditions are now applied; namely, 

Thus, after the values of (olo=O and ~~-~=(p,, are substituted, equation ((22) becomes 

I 
4% 

(PI2 

(P13 

(014 

1 CplS 

I _ _ - 
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Therefore, 

One of the tip boundary conditions is 

Thus, 

2 

-2 1 

l-2 1 

l-2 1 

1 -2 1, 

(bm”L z=O= (bw,“), 

, 

The matrix equivalent for the second term of T is 

blcpl’)l,2 
b-m’)3,2 

2(1-PI 20 -d !(U,.cp,‘)5,* =-y- 
(~i(P177,n 
(w1’)9,2 

Therefore T becomes 

T l/Z 

T 312 

T,,z = 

T 712 
T 912 

1 
;” 

al, l/2 lf- 1 

al, 312 

aI, 512 

a1 ,712 

(7% 9/2 JL 
I 

-1 1 

-1 1 
-1 1 

-1 

Qll 

cpl2 

(al3 

(PI4 

a5 

1 
1 1 

-1 

1 
YJll 

(612 

4913 

914 

1 cpl5 

cc31 

(C4) 

Km 

The right-hand side of equation (Cl) can now be equated to the derivative of equation (C5) ; thus, 

In order to obtain pu, the boundary condition 
T=O 

at x=1 must be used. In other words, T goes from Tg12 1 at station 42 to 0 at station 5. A straight line drawn between 
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2 T9,2 these two points would have the slope --. B The value of pls is considered to be this slope; therefore, 

or 

!&I 
!I12 
p13 = 

PI4 

%s/2 

ri -2 i 

If the matrix multiplication is carried out, the difference equivalent of equation (Cl) finally becomes 

where 

! 
2b,o+4b,,+b,, --2bll--2b,2 b 12 

-2b,,--2b,2 b,1+4bn+b, -2bn-2bu b 13 

[Gl= = b 12 -2bn--2bm bn+4bn+b,4 -2&-2bu b,, 

b 13 -261312314 h-t& --2L 

6 14 --2L b 14 

--a1,1/2-6,312 aI. 312 

al, 312 -~l,312--a.l,612 al, 5/z 

PII = %W -%K,--al.7,2 al, 7i2 

PI1 Qll 

!412 Ql2 

p13 = 
I 
f [Gl-q$ [n,l] Q13 

P14 Q14 

PI& Ql5 

01.7/2 --al.7t2--a1.gt2 a, 912 

@,9l2 -xgt2 

In order to determine cpo from pl, use must be made of equation (A18) 

1 1 ’ Qoff’- 
ss a1 2 2 

pl dZ2-z Ql” 

or, by use of the boundary condition ~~(0) = ‘po’ (0) =O, 

Q11 

Q12 

(613 

Q14 

Q15 

((37) 

I --- 
‘I ... ,. ‘.” .., 
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In matrix form equation (CT) becomes 

(001 

Qo2 1 1 
(PO3 =e4 1 1 1 
Qo4 

i 1 

1 1 1 1 
QM 1 1 1 1 1 

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 

Thus, if the values c 

(u2lf-40 (011 

b2l& Q12 

(a2la1>2 (013 (-9 

b2/&)3 Q14 

l/2 1 1 1 1 @2hL Ql.5 

)f pl (which can be determined numerically or analytically according to preference and feasibility) are 
known, the values of (ol can be found by solving equation (CS) and the values of Q. in turn by means of equation ((28). 

The foregoing development applies to the case where only linear chordwise deformations are allowed. A similar pro- 
cedure is followed in expressing the differential equations pertaining t.o the parabolic theory in difference form; only the 
results are shown herein. 

The matrix equivalent to equations (A34) and (A35) is 

$1 

PI2 

!A3 

a4 

!I& 

9121 

!L= 

%3 

!b4 
P25/2 

$ [CJ-4v [D2] 

$ w21 
-%$!d [D2] 

$ W31 -v [D31 t 

4(1-p2)[E] 

where 

r2b,o+4b,~+b,, -2b,,--2bnz b n2 

(PII 

(PI? 

(PIP 

Q14 

Q15 

Q21 

Q22 

Q23 

Q24 

Q25 

1 
-2bb,,-2bb,, b,l$4b,zfb,,3 --zb,,--zb,, b n3 

[Cnl= bn2 -2b,,--zb,L, b,,+4b,,+b,, -2bn,-2b,,, bn4 

Pnl = 

1 b 723 -2bn3-2bn4 b,,S4bn, -2bn, 
b n4 --2L b n4 

-%1/2-%3/2 %l,3I? 

%I. 312 -u,312-a,r,5r2 G. 512 

an, 5,2 -G7,512-“~,i12 a,, il2 

f-h?, 712 -%zs i/2-“n, 912 %I, 912 

G?, 912 --an,9/2 1 

Kw 

--... _ _ .__- . _..-..- .._ _ - ._ .-- - _.. _. . ._. -.-.--_- . ..-.- _. .-. . ---.-..--. -. ._.---- ..__..... - 
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Ia= 

a11 

[ 

a12 

= a13 

al4 

a! 

and ~1 and q2 are the.right-haqd sides of equations. (A34) and (A35), respectively; that is, ,.-. 

With ~1 and cpz known, (o. can be obtained by use of equation (A33) 

901 

cpoz 1 
= 

PO3 

‘PO4 

(PO.5 

[ 1 

1 

1 

1 

1 

1 1 Ii 112 l/2 l/2 l/2 l/2 1 1 1 1 1 1 1 1 1 1. [ 

l/a*0 
l/all 

E4 lbl2 
l/al3 

1 /a14. 

Ii 1 1 1 1 1 1 

(a&Jo 

(aphI) 1 

(a21aJ 3 

b2/ad3 

(a21al) 4. 

(a3bJo 

b3h) 1 

(a3bd 2 

(a31aJ 3 

(a3bJ 

1 

It should bc noted that, as can be expected, the matrix 
equations (CS) and (CS) are merely special cases of equations 
(C9) and (ClO), respectively. In addition, the square 
matrices in equations (CS) and (C9) are symmetric, a result 
that is consistent with the fact that the differential equations 
under consideration are self-adjoint. 

In the beginning of this appendix the assumption was made 
that the functions involved in the differential equations are 
continuous and nonsingular. The difference solution, how- 
ever, may be adequate for some cases in which this assump- 
tion is not strictly correct. For instance, the deflections of 
a plate with a discontinuous stiffness distribution could con- 
ceivably be not very different from the deflections of a plate 

cpll 

$713 - 

4714 

(P15 

(P21 9721 

cPas cp22 

(P23 -2pe2 (P23 

(P24 (P24 

(P25 9925 

1 1 1 I[ 1 1 I[ 1 1 1 1 1 1 1 1’ 1’ 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1, 1, 1 
PII 

PI2 

PI3 - 
PI4 

Pd2 

(ClO) 

: .I I 

with a continuous stifl’ness distribution closely approximating 
the discontinuous distribution except in the neighborhood of 
the discontinuity. The results yielded by the difference solu- 
tion in this case would be those associated with the continuous 
stiffness distribution. The number of stations may have to 
be increased, however, in order to minimize the inaccuracy 
introduced by the discontinuity or, in other cases, by a 
singularity. The case of the symmetrical double-wedge air- 
foil section, constant-thickness-ratio delta plate, discussed 
in the body of this report, is an example of a treatment of a 
singularity. In this case, although the solution is singular, 
adequate accuracy is obtained by the difference solution if 
ten equal intervals are used. 



APPENDIX D 
DEFLECTION AND STRESS EXPERIMENTS ON SOME TRIANGULAR CANTILEVER PLATES 

Test specimens.-The specimens tested were: (1) a 45O 
right-triangular plate clamped along one leg and (2) a 60’ 
right-triangular plate clamped along the longer leg. Each 
specimen, cut from 24S-T4 aluminum-alloy sheet of 0.250- 
inch thickness, had a length perpendicular to the clamped 
edge of 30 inches. 

Method of testing---Figure 12, a photograph of the test 
setup, shows the methods of clamping, loading, and measure- 
ment of deflections. A l,OOO,OOO-pound clamping load (held 
constant during the test) was applied to the root area of each 
specimen and a uniform load of 0.204 psi was applied by 
2-inch washers giving a tip deflection in each case of approx- 
imately $ inch. 

The deflections were measured by dial gages placed at the 
points indicated in figures 2 and 3. 

Stresses were obtained from the 45” specimen only. On 
this specimen, 13 resistance-wire rosette strain gages were 
placed at the points indicated in figure 5. The plate was 
loaded with 2-inch washers in four increments of 0.0847 psi 
per increment and the maximum tip deflection was 1.13 
inches. Readings of all the strain gages were recorded at 
each increment of loading. 

Analysis and discussion of data.-The deflection w was 
plotted in figures 2 and 3 in terms of the nondimensional 

FIQURE 12.-Deflection test setup of the 45’ delta plate under uniform 
load. 

20 

parameter wD/pF, in which the elastic constants were taken 

as E=10.6X106 psi and p=$ It was found that the dial- 

gage forces reduced the tip deflection of the plate by approx- 
imately 2 percent; however, since this error is of the same 
order of magnitude as that in the material properties and 
from other sources, no corrections are made in the results 
presented. 

The readings of each of the 39 individual strain gages were 
plotted against load, and the slope of each of the resulting 
linear curves was taken as the average strain per unit load 
of the individual gage. The principal stresses were then 
calculated and plotted in figure 5 in terms of the nondimen- 
sional parameter (rt2Jp12. 
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